Risultati esame scritto Fisica 1 - 10/01/2014 orali: 17/01/2013 alle ore 10:00 presso aula G7

(gli studenti interessati a visionare lo scritto sono pregati di presentarsi il giorno dell'orale)

Nuovo Ordinamento				Vecchio Ordinamento				
		voto				voto		
AIELLO	ANTONELLA	11		MUNGO	ALFREDO	18	ammesso	
BIANCO	FRANCESCA	13						
CANINO	MARIA	nc						
CARBONE	PASQUALE CARMINE	14						
CARCHEDI	GIUSY	nc						
CARUSO	FRANCESCA	nc						
CLEMENTE	FILIPPO	nc						
COVANI	DEMETRIO	nc						
DE MASI	GIADA	nc						
DOLCE	FABIOLA	10						
GIGANTE	ANTONIETTA	13						
MARINO (109813)	FRANCESCA	nc						
MARTINIS	MARIA CHIARA	nc						
METE	PAOLA	12						
MONTEVERDE	ALESSANDRO	nc						
NOCITA	FEDERICA	nc						
OLIVA	GIUSEPPE	10						
PERSIA	ALESSIA	17	ammesso					
PITITTO	MIRIANA	17	ammesso					
PUGLIESE	FILOMENA	13						
QUATTROMANI	MIRIAM	17	ammesso					
RUSSO	ERICA	nc						
SCARPINO	ILEANA	nc						
SCICCHITANO	FRANCESCO	20	ammesso					
SCUMACI	FRANCESCO	nc						
SERGI	CARLA	nc						
SOLLAZZO	AMALIA	10						
SPAGNOLO	EMANUELE	11						
SPAGNUOLO	SIMONE	15						
VALLELUNGA	ROSARINA	10						

Esame di Fisica 1

Corso Interateneo di Ing. Informatica e Biomedica – 10/01/2014

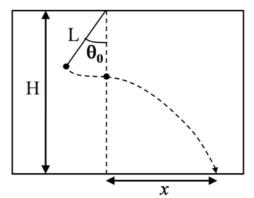
Problema 1

Sia data una stanza di altezza totale pari a H, al cui soffitto è appesa mediante una corda una sfera; la corda e la sfera costituiscono un pendolo di lunghezza L. Il pendolo viene spostato dalla sua posizione di equilibrio,

verticale, di un angolo pari a θ_0 , e quindi rilasciato con velocità iniziale nulla. Una volta raggiunta la posizione di equilibrio verticale, la corda del pendolo si spezza.

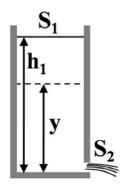
Determinare:

- 1) un'espressione per la distanza orizzontale x percorsa dalla sfera nel momento in cui arriva sul pavimento (in funzione dei parametri L, H, θ_0);
- 2) per quale valore di L si ha la massima gittata x (esprimere il risultato in funzione di H) e la corrispondente gittata x (risultato in funzione di H e θ_0)



Problema 2

Sia dato un serbatoio cilindrico, di sezione S_1 , contenente liquido fino ad un livello h_1 dal fondo del serbatoio. Il serbatoio è aperto in cima e a contatto con la pressione atmosferica; sulla parete del serbatoio, in corrispondenza del fondo del serbatoio (ovvero ad un livello h=0), si trova un'apertura di sezione S_2 <S da cui fuoriesce il liquido. La velocità v_1 con cui si muove il livello y del liquido all'interno del serbatoio non è trascurabile (ovvero v_1 ≠0). Determinare in quanto tempo t si svuota il serbatoio (esprimere il risultato in funzione di h_1 , h_2 , h_3 , h_4 , h_5



Soluzione problema 1

Punto 1): Applichiamo la conservazione dell'energia per calcolare la velocità con cui parte la sfera subito dopo la rottura della corda; la variazione di energia potenziale fra la posizione θ_0 e la posizione verticale viene tutta convertita in energia cinetica, per cui:

$$\frac{1}{2}mv^2 = mgL(1 - \cos\theta_0)$$
$$v = \sqrt{2gL(1 - \cos\theta_0)}$$

Quest'ultima è la velocità orizzontale con cui la sfera parte dalla posizione verticale e compie una gittata parabolica verso il pavimento. Dal momento in cui si spezza la corda, la sfera è sottoposta alla sola accelerazione di gravità *g* verso il basso; le corrispondenti equazioni del moto sono:

$$\begin{cases} y = (H - L) - \frac{1}{2}gt^2 \\ x = v \cdot t \end{cases}$$

$$\begin{cases} 0 = (H - L) - \frac{1}{2}gt^2 \\ x = v \cdot t \end{cases}$$

$$\begin{cases} t = \sqrt{2(H - L)/g} \\ x = v \cdot t = v \cdot \sqrt{2(H - L)/g} \end{cases}$$

Sostituendo nell'ultima espressione per x l'espressione trovata per la velocità v si trova che la gittata x è:

$$x = \sqrt{2gL(1-\cos\theta_0)} \cdot \sqrt{2(H-L)/g}$$
$$x = 2\sqrt{L(H-L)(1-\cos\theta_0)}$$

Punto 2): Per determinare il massimo valore della gittata x al variare della lunghezza L, basta derivare rispetto a L l'espressione trovata per x e imporre che essa sia uguale a zero:

$$\frac{dx}{dL} = 2\sqrt{(1 - \cos\theta_0)} \frac{d}{dL} \left[\sqrt{L(H - L)} \right]$$

$$\frac{dx}{dL} = 2\sqrt{(1 - \cos\theta_0)} \frac{d}{dL} \left[\sqrt{LH - L^2} \right]$$

$$\frac{dx}{dL} = 2\sqrt{(1 - \cos\theta_0)} \frac{1}{2} \left[\frac{H - 2L}{\sqrt{LH - L^2}} \right] = 0 \rightarrow H - 2L = 0 \rightarrow L = \frac{H}{2}$$

Quindi la massima gittata x si ottiene per L=H/2 ed in corrispondenza di tale valore di L si ottiene una gittata x pari a:

$$x = \sqrt{4\left(\frac{H^2}{2} - \frac{H^2}{4}\right)\left(1 - \cos\theta_0\right)}$$
$$x = H\sqrt{\left(1 - \cos\theta_0\right)}$$

Soluzione problema 2

Applichiamo il teorema di Bernouilli tenendo presente che la pressione che si esercita sulle sezioni S_1 e S_2 è la stessa e pari alla pressione atmosferica:

$$\frac{1}{2}\rho v_1^2 + \rho gy = \frac{1}{2}\rho v_2^2 + \rho g \cdot 0$$
$$\frac{1}{2}\rho v_1^2 + \rho gy = \frac{1}{2}\rho v_2^2$$

dove ρ è la densità del liquido, v_1 e v_2 rispettivamente le velocità con cui si muove il liquido in corrispondenza delle sezioni S_1 e S_2 , e y è il livello del liquido nel serbatoio. Nell'ultima espressione scritta possiamo introdurre al posto della velocità v_2 un' espressione derivata dalla equazione di continuità:

$$S_1 v_1 = S_2 v_2$$

$$v_2 = \frac{S_1}{S_2} v_1$$

Sostituendo, e semplificando la densità ρ , si ottiene allora che:

$$\frac{1}{2}v_1^2 + gy = \frac{1}{2} \left(\frac{S_1}{S_2}\right)^2 v_1^2$$

$$v_1^2 \left[1 - \left(\frac{S_1}{S_2}\right)^2\right] = -2gy$$

$$v_1^2 \left(\frac{S_1^2}{S_2^2} - 1\right) = 2gy$$

$$v_1^2 \left(\frac{S_1^2 - S_2^2}{S_2^2} \right) = 2gy$$

$$v_1^2 = 2 \left(\frac{S_2^2}{S_1^2 - S_2^2} \right) gy$$

$$v_1 = \sqrt{2\left(\frac{S_2^2 g}{S_1^2 - S_2^2}\right)} \cdot \sqrt{y}$$

L'ultima espressione costituisce un'equazione differenziale per il livello y del liquido, scrivendo che $v_1=-dy/dt$; il segno meno "-" è dovuto al fatto che per v_1 positivo si ha una diminuzione del livello y del liquido:

$$-\frac{dy}{dt} = \sqrt{2\left(\frac{S_2^2 g}{S_1^2 - S_2^2}\right)} \cdot \sqrt{y}$$

Integrando l'ultima equazione fra l'istante iniziale t=0 (per il quale $y=h_1$) e l'istante finale t (per il quale y=0) si ottiene che:

$$-\int_{h_{1}}^{0} \frac{dy}{\sqrt{y}} = \sqrt{2} \left(\frac{S_{2}^{2} g}{S_{1}^{2} - S_{2}^{2}} \right) \cdot \int_{0}^{t} dt$$

$$-\left[2\sqrt{y} \right]_{h_{1}}^{0} = \sqrt{2} \left(\frac{S_{2}^{2} g}{S_{1}^{2} - S_{2}^{2}} \right) \cdot t$$

$$2\sqrt{h_{1}} = \sqrt{2} \left(\frac{S_{2}^{2} g}{S_{1}^{2} - S_{2}^{2}} \right) \cdot t$$

$$t = \sqrt{\frac{2h_{1}}{g} \left(\frac{S_{1}^{2}}{S_{2}^{2}} - 1 \right)}$$

dove l'ultima espressione rappresenta il tempo *t* impiegato dal serbatoio a svuotarsi completamente.