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Abstract: The management of the COVID-19 pandemic presents several unprecedented challenges
in different fields, from medicine to biology, from public health to social science, that may
benefit from computing methods able to integrate the increasing available COVID-19 and related
data (e.g., pollution, demographics, climate, etc.). With the aim to face the COVID-19 data
collection, harmonization and integration problems, we present the design and development of
COVID-WAREHOUSE, a data warehouse that models, integrates and stores the COVID-19 data
made available daily by the Italian Protezione Civile Department and several pollution and climate
data made available by the Italian Regions. After an automatic ETL (Extraction, Transformation and
Loading) step, COVID-19 cases, pollution measures and climate data, are integrated and organized
using the Dimensional Fact Model, using two main dimensions: time and geographical location.
COVID-WAREHOUSE supports OLAP (On-Line Analytical Processing) analysis, provides a heatmap
visualizer, and allows easy extraction of selected data for further analysis. The proposed tool can
be used in the context of Public Health to underline how the pandemic is spreading, with respect
to time and geographical location, and to correlate the pandemic to pollution and climate data in
a specific region. Moreover, public decision-makers could use the tool to discover combinations of
pollution and climate conditions correlated to an increase of the pandemic, and thus, they could act
in a consequent manner. Case studies based on data cubes built on data from Lombardia and Puglia
regions are discussed. Our preliminary findings indicate that COVID-19 pandemic is significantly
spread in regions characterized by high concentration of particulate in the air and the absence of rain
and wind, as even stated in other works available in literature.

Keywords: Italian COVID-19 data; data analysis; data warehouse; data integration; pollution data;
climate data

1. Introduction

The COVID-19 (COronaVIrus Disease 2019) outbreak is caused by a novel coronavirus named
Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) [1] and has been classified
as a pandemic disease by the World Health Organization (WHO) on 12 March 2020. SARS-CoV-2 has
spread over all the world in less than six months, causing more than 10 million tested-positive cases
and more than half a million confirmed deaths [2].

A global response has been quickly developed in the form of collective data collection and analysis
efforts, which are generally aimed to understand SARS-CoV-2 biology and delivering therapeutic
solutions in clinical/pharmacological protocols [3].
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Thus, the management of the COVID-19 pandemic presents several unprecedented challenges
that regard a plurality of fields and that may benefit from computing infrastructures and software
pipelines, with the main aim to integrate the increasing COVID-19 publicly available data to allow
their full exploitation and world-wide collaboration.

COVID-19 poses many challenges to several research and application fields that regard, to cite
a few: molecular basis of the disease, virus mutations, vaccines and drugs, diagnosis and therapy,
ICUs (Intensive Care Units) management [4], healthcare logistic [5], large scale testing of people to find
diseased people and already healed people, large scale tracing of people movements and contacts to
reduce the spread of the virus, infectious disease modeling [6], epidemiology, public health, effects of
pandemic at emotional and behaviour level [7], impact of pandemic on remote working [8], etc.

Each one of these challenges may benefit from advanced computing infrastructures and novel
software pipelines [9], here we focus on the issue of data integration of publicly available COVID-19
data, that may simplify data visualization and aggregation, e.g., for decision making and for focusing
on specific aspects of the problem, or may simplify the connection of such disease data with
environmental and climate data [10,11].

A main issue of current publicly accessible COVID-19 data, is that it is provided in raw textual
format, such as Comma Separated Value (CSV) files. On one hand, this allows an easy download of
data, but on the other hand, data is not structured and requires heavy pre-processing and ingestion
activities for further analysis.

Main current COVID-19 data is provided by government agencies. Focusing on the Italian
Protezione Civile Department, data is communicated daily by the national Protezione Civile branch,
and contains a set of measures detected daily on the territory, such as the number of daily infected
subjects quarantined at home, hospitalized patients, hospitalized patients into ICU, deceased subjects,
healed subjects, performed swab, positive and negative swabs, and so on. Such measures are
roughly geo-localized to local administrative entities, such as provinces, regions and the overall
nation. Moreover, local Protezione Civile branches provide the regional data that is collected
by the national Protezione Civile branch. Finally, data is provided through collections of CSV
files organized in provinces, regions, nation. This data may be dowloaded at the following URL:
https://github.com/pcm-dpc/COVID-19.

Although the data spread in such various CSV files is provided in raw unstructured format,
it can be conceptually organized using a classical data warehouse (DW) data model, e.g., using the
Dimensional Fact Model. The Dimensional Fact Model uses three main concepts: facts, that refer to
the subject of study (e.g., the study of deceased people due to COVID-19), measures that refer to the
measured data about the studied phenomena (e.g., the number of deceased people due to COVID-19,
in a given time and place), and dimensions that refer to hierarchies along which measures can be
considered and aggregated (e.g., the temporal dimension may include the day, week, month, year
hierarchy, while the geographical dimension may include the city, province, region, nation hierarchy).
On each dimension, several aggregation functions can be defined, such as the sum, median, medium
value of all measures data points (e.g., the deceased people in March 2020 in the Calabria region).

In summary, relevant data, named facts, are used to analyze a phenomena and are measured
through some variables named measures. Measures are collected at different points along one or more
dimensions. The dimensions can be considered as the filters that will allow us to group (and analyze)
the data collected in the DW. Examples of dimensions are the geographical dimension, the temporal
dimension, or type dimension. Here the measures are the measured COVID-19 data provided by
the Italian Protezione Civile Department, while the dimensions are the temporal dimension and the
geographical dimension.

The advantage to model COVID-19 data using the DW model is the possibility to build relevant
data cubes on the top of the DW and to apply well known OLAP (On Line Analytics Processing)
analysis operations.

https://github.com/pcm-dpc/COVID-19
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For instance, considering the data cube of deceased patients (the fact), that contains all the
measured number of deceased people per day and per location, by considering the temporal and
geographical dimensions, the OLAP model provides several analysis operations, such as Slice and
Dice or Drill-up and Drill-down.

The main contribution of this paper is the design and development of a data warehouse named
COVID-WAREHOUSE that models and stores the COVID-19 data made available daily by the
Italian Protezione Civile Department using the Dimensional Fact Model. A second contribution
is the integration in such data warehouse of some pollution and climate data made available by
the Lombardia and Puglia regions. COVID-WAREHOUSE allows to aggregate and view data using
standard OLAP functions and allows to study the possible correlation between COVID-19 data
and pollution and climate data in Italy. The rest of the paper is organized as follows. Section 2
recalls recent works aimed to build centralized repositories of COVID data, that jointly analyzed
COVID-19 and environmental data. Section 3 describes the COVID-19, pollution and climate data
that have been integrated into the data warehouse. Section 4 presents the design and implementation
of COVID-WAREHOUSE. Section 5 presents some case study showing relevant data cubes built on
COVID-WAREHOUSE and different data analysis performed on them. Moreover, some correlations
among COVID-19 and environmental data are presented. Section 6 concludes the article and outlines
future work.

2. Background

In this Section, we first report some recent initiatives aiming to build data warehouses
of COVID-19 data, along with some open-source initiatives to build data warehouse systems.
Afterward, we present some recent works that integrated and analyzed COVID-19 data with
environmental and pollution data.

2.1. Data Warehouse Systems

Here, we summarize some of the most used open-source data warehouse systems.
BIRT (http://www.eclipse.org/birt/) is an open-source software project that provides the

technologies and platform to create data visualizations and reports that can be embedded in rich
client and web applications. Because BIRT is developed by using Java technology. BIRT is a top-level
software project within the Eclipse Foundation, an independent not-for-profit consortium of software
industry vendors and an open-source community. BIRT is distributed under the Eclipse Public License
(EPL). BIRT comprises two main components: (i) a visual report designer for creating BIRT Designs,
and (ii) a runtime component for generating designs that can be deployed on any Java environment.
The BIRT project also includes a charting engine that is both fully integrated into the BIRT designer
and can be used standalone to incorporate charts into an application. BIRT designs are made persistent
as XML and can access several different data sources, including JDO datastores, JFire Scripting Objects,
POJOs, SQL databases, Web Services, and XML.

OpenReports is a powerful and easy-to-use open-source web-based reporting solution that
provides dynamic report generation capabilities. OpenReports supports a variety of open-source
reporting engines, including JasperReports, JFreeReport, JXLS, and Eclipse BIRT. It also includes
QueryReports and ChartReports, to create SQL based reports that do not require a predefined report
definition. Additionally, OpenReports now supports OLAP, via Mondrian and JPivot. OpenReports
provides a web-based report generation and administration interface with the following features:
support for a wide variety of export formats, such as PDF, HTML, CSV, XLS, RTF, and Image;
support for Drill-Down reports and external application integration via secure report generation
URL. OpenReports reports generation and scheduling capabilities are also available directly via the
ReportService, a Service-oriented architecture (SOA) for report generation, through a comprehensive
and flexible API exposed as a SOAP web service and to HTTP GET/PUT requests. OpenReports’

http://www.eclipse.org/birt/
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source code can be downloaded from the SourceForge project page (http://sourceforge.net/projects/
oreports/).

Intermine (http://intermine.org) is a powerful open-source data warehouse system [12]; it allows
users to integrate diverse data sources with minimal effort, providing powerful web-services and an
elegant web-application with minimal configuration. InterMine is an open-source data warehouse
released under the license (LGPL 2.1) and free to use explicitly built for the integration and analysis of
complex biological data. It powers some of the biggest data warehouses in the life sciences, including
FlyMine, HumanMine, MouseMine, YeastMine, ZebrafishMine, RatMine, TargetMine, ThaleMine,
and PhytoMine. Intermine provides dynamic data tables that allow users to easily drill down into
data, filter data, add additional columns, and navigate to report pages. More details about the full
functionalities are available on Intermine website (https://intermine.readthedocs.io/en/latest/).

The article available here (https://www.stitchdata.com/integrations/covid-19/) discusses one of
the issues faced by our paper, i.e., the automatic ingestion of publicly available COVID-19 CSV files into
a structured data warehouse. Starting from the consideration that the main public available COVID-19
datasets are CSV files, the proposed Stitch integration tool supports the Extraction Transformation and
Loading (ETL) of such COVID-19 datasets into the user data warehouse. The Stitch integration is a set
of guidelines and tools to build a data warehouse that requires several steps (https://www.stitchdata.
com/docs/integrations/saas/covid-19). Although the system seems to cover several data sources
stored in GitHub (for which the system provides metadata about each data source schema), its usage is
free for seven days only. This tool has been created by a collaboration between the Singer open-source
community, Talend and Bytecode (https://www.talend.com/blog/2020/04/05/talend-joins-fight-
against-covid-19-unlocking-data-for-health-researchers/). The COVID-19 integration includes the
following datasets:

• Johns Hopkins CSSE Data (https://github.com/CSSEGISandData/COVID-19), that contains
COVID-19 data provided by JHU CSSE (https://systems.jhu.edu/research/public-health/
ncov/);

• EU Data (https://github.com/covid19-eu-zh/covid19-eu-data), that contains automated data
collection of COVID-19/SARS-COV-2 cases in EU by Country, State, Province, Local Authorities,
and Date;

• Italy Data (https://github.com/pcm-dpc/COVID-19), that contains automated data collection of
COVID-19/SARS-COV-2 cases in Italy by Regions, Province, and Date;

• NY Times U.S. Data (https://github.com/nytimes/covid-19-data), that contains data on
coronavirus cases and deaths in the U.S. (https://www.nytimes.com/interactive/2020/us/
coronavirus-us-cases.html);

• Neher Lab Scenarios Data (https://github.com/neherlab/covid19_scenarios_data), that contains
data preprocessing scripts and preprocessed data for COVID-19 Scenarios project (https://
covid19-scenarios.org/), a mathematical model simulating several COVID-19 outcomes on the
basis of some user-defined parameters;

• COVID-19 Tracking Project (https://github.com/COVID19Tracking), that collects and publishes
data for US states and territories (https://covidtracking.com/).

The COVID-19/2019-nCoV Time Series Infection Data Warehouse available here (https://github.
com/BlankerL/DXY-COVID-19-Data/blob/master/README.en.md) contains the COVID-19 Global
Pandemic Real-Time Report provided by Ding Xiang Yuan (https://ncov.dxy.cn/ncovh5/view/en_
pneumonia). Ding Xiang Yuan (DXY) is a medical online social networking service for China’s
physicians and medical professionals. The data is obtained by COVID-19 Infection Data Realtime
Crawler. The data is published hourly and is provided as CSV files. As data sources, it uses both
Chinese and International data sources.

Google had launched the COVID-19 public dataset program (https://cloud.google.com/
blog/products/data-analytics/free-public-datasets-for-covid19). This repository contains public
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datasets, like Johns Hopkins Center for Systems Science and Engineering (JHU CSSE),
the Global Health Data from the World Bank, and OpenStreetMap data, free to access and
query (https://console.cloud.google.com/marketplace/details/bigquery-public-datasets/covid19-
dataset-list\?preview=bigquery-public-datasets).

The article available here (https://towardsdatascience.com/a-short-review-of-covid-19-data-
sources-ba7f7aa1c342) describes some further initiatives and in particular discusses the strength and
weakness of the following data sources:

• 1 Point 3 Acres (https://coronavirus.1point3acres.com/en);
• Johns Hopkins CSSE (https://github.com/CSSEGISandData/COVID-19);
• The COVID Tracking Project (https://covidtracking.com);
• The Kaggle Novel Coronavirus Dataset (https://www.kaggle.com/sudalairajkumar/novel-

corona-virus-2019-dataset);
• Ding Xiang Yuan (https://ncov.dxy.cn/ncovh5/view/en_pneumonia);

In summary, all the COVID-19 repositories are unstructured collections of CSV files. Only
STICH proposes a data warehouse of COVID-19 data, but it is not free nor open, so we did not
use it. In addition, we reported some open-sources projects BIRT, OpenReports, and Intermine.
BIRT provides the assets to create data visualizations and reports embedded in web applications.
OpenReports provides the tools to create dynamic reports in web applications. Finally, Intermine is
data warehouse system for the integration and analysis of complex biological data.

2.2. Methods to Integrate and Analyze Covid-19 Data with Environmental and Pollution Data

Here, we present some recent works devoted to integrate and analyze COVID-19 data with
environmental and pollution data. In the work [13], authors correlated the data about deceased people
in USA due to COVID-19 with pollution data and the authors demonstrated, using different statistical
methods, that a very small increase in the fine particulate matter PM2.5 is responsible for a very great
increase in mortality of COVID-19 patients.

In the work [14], authors used the Group Method of Data Handling (GMDH) neural network
to analyze climate and confirmed COVID-19 case in the Hubei province in China, considering a
30 days period. Maximum, minimum, average daily temperature, relative humidity, wind speed,
and density of population, were used as the input dataset for predicting the number of confirmed cases.
The classification model was able to predict confirmed cases with good accuracy. Moreover, regression
analysis demonstrated that relative humidity and maximum daily temperature had a strong impact
on confirmed cases: relative humidity affected positively the confirmed cases, while maximum daily
temperature affected negatively the confirmed cases. These results confirm other studies reported
in [15].

In the work [16], the authors study the impact of climate and urban measures on confirmed cases
of COVID-19 in three Italian regions using multivariate linear regression (MLR). The MLR model
demonstrated that some climate (average temperature, relative humidity, wind speed) and urban
measures (population density) impact on confirmed cases of COVID-19.

The works presented so far do not offer any integrated curated repository of those data.

3. Italian Covid-19, Pollution and Climate Data

Regional differences related to the cumulative incidence and its variation in the number of
cases, deaths, and complications related to COVID-19, could prove useful in identifying a relationship
between epidemiological and environmental factors. To obtain a more in-depth overview, it is necessary
to integrate adequate data and information for analysis. In this paper, three main categories of data
have been considered:

1. Epidemiological COVID-19 data,
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2. Air pollution data,
3. Weather data.

The current Section provides an overview of each of the aforementioned categories of data
available for Italy at different administrative division levels.

3.1. Epidemiological Covid-19 Data

Since 24/02/2020, a daily updated repository containing the official data on Italian COVID-19
has been made publicly available by the Italian Department of Civil Protection at https://github.com/
pcm-dpc/COVID-19.

The provided repository contains information related to the number of total cases, current,
and daily new cases, as well as the number of Hospitalized, Recovered, and Death patients. Data is
provided in a time-series data fashion, and collected at three different administrative division levels:
National level, Regional or first-level, and Provincial or second-level administrative division. For each
division, different information is reported in a comma-separated values (CSV) file. In particular,
daily data provided at regional levels are collected from all the nineteen Italian regions and the
2 autonomous provinces of Trento and Bolzano. Regional data for each field is aggregated and stored
at a national level, while the Provincial dataset only reports information for the total number of cases
per Province. This heavily limits the possibility of making analysis at a province level. Some Regions
provide province data but often in an unstructured way, e.g., in HTML format. The available data
fields are: the used Date format (e.g., YYYY-MM- DDTHH:MM:SS (CEST)), the Country Reference
(e.g., XYZ ISO 3166-1 alpha-3), Region Id Number, Region Name, Province Id Number, Province
Name, Hospitalised patients (not ICU), Patients in ICU, Total hospitalised patients (e.g, hospitalised
patient plus patient in ICU), Number of home-treated patients, Total amount of Positive Cases (e.g.,
the cumulative measure of Total hospitalised patients and Home-treated patients), Variation in daily
incidence (e.g., the difference of the total amount of Positive Cases at current day and the total amount
of Positive Cases at previous day), Variation in cumulative incidence (e.g., the difference of total cases
at current day minus the total cases at previous day), Recovered, Death, Total amount of positive
cases, Number of performed tests (SWABS), Number of tested people 24, Notes e.g., issues in reporting
collection for that day, both in Italian and English language.

3.2. Air Pollution Data

Many scientific works are also counting air pollution among the main responsible for the spreading
of the COVID-19 virus [13]. A crucial public health objective is to identify critical environmental factors,
such as air pollution, that could boost the severity of the health outcomes (e.g., ICU hospitalization
and death) among people affected by COVID-19. As stated in the work of Wu et al. [13], authors
have determined that there is a substantial overlap between causes of deaths of COVID-19 patients
and the diseased people that are affected by long-term exposure to fine particulate matter (PM2.5).
In this regard, we collected from the Lombardia and Puglia Italian Regions (At the time of writing we
were able to collect data only from those two regions.) the air pollution data. From the Lombardia
region, it has been possible to download the pollution data for all the provinces, available at
the ARPALombardia web site (https://www.arpalombardia.it/Pages/Aria/Richiesta-Dati.aspx#).
The Lombardia air pollution data are stored in multiple CSV files arranged as couples Provincia and
particulate, and sorted by detection data. The measured particulate particles enclose Nitrogen dioxide
(NO2), nitric oxide (NOX), Carbon monoxide (CO), Sulfur dioxide (SO2), Ozone (O3), Ammonia
(NH3), Benzene (C6H6), Particulate Matter (PM10), i.e., particulate matter with a diameter smaller than
10 micrometers, and Particulate Matter (PM2.5), i.e., particulate matter with a diameter of less than
2.5 micrometers. The detected concentration for each kind of particles in the air is expressed as µg/m3.
An example of air pollution data available at the Lombardia Region web site is shown in Table 1.

https://github.com/pcm-dpc/COVID-19
https://github.com/pcm-dpc/COVID-19
https://www.arpalombardia.it/Pages/Aria/Richiesta-Dati.aspx#
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Table 1. The detected PM10 values for the city of Bergamo (Via Meucci Station), available on the
ARPALombarida web site. The measures start from 2020/01/01, up to the date of writing. The −999
value means a missing value.

Date/Time PM10 -µg/m3

2020/01/01 00:00 42

2020/01/02 00:00 52

2020/01/03 00:00 49

From the Puglia region, we were able to download the pollution data for all the provinces,
available at the ARPAPuglia web site (http://www.arpa.puglia.it/pentaho/ViewAction?solution=
ARPAPUGLIA&path=metacatalogo&action=meta-aria.xaction). The Puglia air pollution data are
stored either in multiple CSV files or in a single CSV file and are arranged as tuples. The attributes are
the Province name, date and time of the measurement, the measured particulate values, the name of
the detection unit, and the name of the particulate.

The measured particulate particles enclose Nitrogen dioxide (NO2), nitric oxide (NOX), Carbon
monoxide (CO), Sulfur dioxide (SO2), Ozone (O3), Ammonia (NH3), Benzene (C6H6), hydrogen sulfide
(H2S), impact pathways approach (IPA TOT), BLACK CARB, Particulate Matter (PM10), and Particulate
Matter (PM2.5). The detected concentration for each kind of particles in the air is expressed as µg/m3.
An example of air pollution data available at the Puglia Region web site is shown in Table 2.

Pollution data from Lombardia and Puglia have been downloaded manually.

Table 2. The detected PM2.5 values for the city of Bari, available on the ARPAPuglia web site.
The measures start from 2020/02/24, up to the date of writing.

DetectionUnit Date/Time Prov CityHall Particulate Values Warn

Bari-Cavour 2020-02-24 00:00:00.0 Bari Bari PM2.5 23

Bari-Cavour 2020-02-25 00:00:00.0 Bari Bari PM2.5 24

Bari-Cavour 2020-02-26 00:00:00.0 Bari Bari PM2.5 13

3.3. Weather Data

Several are the studies investigating the relations among human coronaviruses and environmental
humidity and temperature measures [17–19] In particular, recently proposed works aiming at
investigating the effects of different meteorological conditions on the spread of COVID-19, may suggest
an existing relationship between average temperature and COVID-19 incidence rates [20–23]. However,
research in this field is still limited and, therefore, efforts are needed to provide reliable data sources.
Concerning this, weather-related data has been automatically collected for every Italian province, from
2020/02/24, up to the date of writing, through automatic web scraping techniques.

For data collection, Python Beautiful Soap and requests libraries have been used to automatically
collect weather information from the Italian website ”IlMeteo.it” (https://www.ilmeteo.it/portale/
archivio-meteo/) and to store the data in a single CSV file. A pipeline for data collection is reported in
Figure 1. For instance, to collect the weather data relating to the province of Milan on 24 March 2020,
the Python code:

• reconstructs the URL relating to the weather archive page containing the weather information for
the province of Milan on the desired date,

• connects to the page and, by parsing the HTML document,
• extracts the desired information.

http://www.arpa.puglia.it/pentaho/ViewAction?solution=ARPAPUGLIA&path=metacatalogo&action=meta-aria.xaction
http://www.arpa.puglia.it/pentaho/ViewAction?solution=ARPAPUGLIA&path=metacatalogo&action=meta-aria.xaction
https://www.ilmeteo.it/portale/archivio-meteo/
https://www.ilmeteo.it/portale/archivio-meteo/
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The described process is then iterated through all the Italian provinces and all the dates that
appear in the epidemiological data file. The information is stored in a CSV format file that is further
ingested in the Data Warehouse.

Figure 1. Weather data collection pipeline. A list of dates and Province names are extracted from the
epidemiological data previously described. Then, the extracted province names are combined with
all dates to reconstruct the URL of each page that contains relative information in the meteorological
website. Data is extracted through data scraping, then raw data is normalized (e.g., by fixing
inconsistency, providing uniformity of unit measurement for each date and province) and cleaned
(e.g duplicate instances and redundant information removal, one-hot encoding of meteorological
phenomena). Finally data is stored in a CSV file format.

The CSV stores data sorted by chronological order. The collected meteorological data include
daily temperature minimum (◦C), temperature maximum (◦C), temperature average (◦C), humidity
maximum (%), humidity minimum (%), humidity average (%), wind speed average (km/h), higher
sea level pressure (mb), the amount of Rainfall (mm) other weather phenomena.

4. Covid-Warehouse: Design and Implementation

The main features of the Data Warehouse (DW) are data integration and consistency, because
the DW relies on multiple sources of heterogeneous data, i.e., data extracted from several internal or
external information systems, or collected in various heterogeneous files. DW undertakes to return
a unified vision of different data, generally represented in multidimensional form.

The basic idea is to see the data as points in a space whose dimensions correspond to as many
possible dimensions of analysis; for example, a point could represent an event that occurred in an
Italian Province, and it is described through a set of measures of interest, e.g., the average number of
deceased people due to COVID-19 in that province. Traditional DW systems are designed to analyze a
massive amount of historical data obtained from transactional data but can also include data from other
sources. A general DW populating process encompasses the following steps: (i) Data Extraction from
a database, or loading data from files to a database ((i.a) If loaded data are not normalised it is need to
normalize them in Third Normal Form (3NF). 3NF is a methodology used to reduce the duplication of
data, avoid data anomalies, and ensure referential integrity.); (ii) Data Transformation: it is necessary
to denormalize and transform the database tables to yield summarized data, multidimensional views,
and faster user response times of data analytics Dimensional Fact Model; (iii) Data Loading: tables are
logical arranged in a multidimensional model known as snowflake, that centralizes the fact tables to a
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multidimensional schema (i.e., data cubes). The snowflake schema centralizes fact tables which are
connected to multiple dimensions normalized into multiple related tables.

DW is developed to deal with an enormous volume of data efficiently (e.g., many years of collected
data to support historical analysis) to be more effective in analytics performance. Thus, the strengths
of the DW, are in the reconciliation and normalization of multiple data sources to homogenize and
integrate the data and eliminate the inconsistencies, it allows to obtain a conceptual model for the data
mart. The model adopted is known as the Dimensional Fact Model (DFM), used to describe all the
concepts of the multidimensional model, i.e., facts, measures, dimensions, and hierarchies.

On the other hand, DW systems are ineffective to preform real time analysis dealing with a
low volume of data in constant evolution, as the case of Italian COVID-19. The COVID-19 data are
produced daily and in small quantities making the classical DW methodologies ineffective. Each day
when new COVID data are available, it is necessary to update the previously collected data with the
new ones. It is worthy to note, that COVID-19, air pollution and climate data are available as small
CSV file. To analyze the daily available data, they have to be normalized (e.g., to remove missing,
duplicated and useless values that might contribute to provide poor quality information) before to
be stored in a databases. After normalization, to yield summarized data i.e., DFM, it is necessary
denormalize and transform the database tables to obtain the new DFM, from which to obtain the
snowflake form. Thus, daily data updates make classical DW ineffective both from a computational
and performance point of view.

For these reasons, we developed COVID-WAREHOUSE, an automatic framework implemented
in Python, coming with all the main features of the traditional DW system, and tailored to effectively
works with small datasets.

The COVID-WAREHOUSE architecture encompasses 5 independent and cooperating levels:
(i) data sources level; (ii) integration level; (iii) warehouse level; (iv) analysis level; and (v) data
visualization level. Figure 2 shows the COVID-WAREHOUSE architecture.

DataData

Data Data

Data Source
Level

ETL
meta
data

Data
Integration

Level

Data Warehouse

Data 
Warehouse

Level

Data
Mart

Data
Mart

Data
Mart

Data
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Data
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Figure 2. The COVID-WAREHOUSE architecture, implemented as 5 independent and cooperating levels.
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The main functions of the 5 levels of COVID-WAREHOUSE architecture are described below.
Data source level: it is responsible for the data collection. The data are obtained from different

external data repositories. Relevant COVID-19, and climatic data are automatically collected from
the respective repositories by using automatic scripts written in Python and made available in
COVID-WAREHOUSE. Whereas, pollution data are manually collected from the respective data
repositories, and made available in COVID-WAREHOUSE.

Integration level: it gets as input the collected data which must be extracted, and cleaned
to eliminate inconsistencies and complete any missing parts. Finally, the normalized data can be
integrated together according to a common schema. To make more effective this preprocessing phase,
the ETL (Extraction, Transformation and Loading) approach, has been implemented using Pandas
library [24], allowing to integrate heterogeneous schemes, as well as to extract, transform, clean up,
validate, filter and load data from the CSV files and other data source in the COVID-WAREHOUSE.
The main target of the preprocessing is to define the common schema to use to merge together the
heterogeneous input data. In fact, to join together COVID-19 data with air pollution and climate
data we must figure out if there exist common attributes or if they can be obtained by combining
other available attributes. To merge together COVID-19 data with air pollution and climate data,
we figure out the following attributes Date/Time, and Province name (i.e., that are available in all
the input datasets) with which to create the joining schema. Before performing the merge, data have
to be cleaned by removing duplicate values as well as removing comments and other annotations
(for which, it was necessary a manual inspection of the input files). The chosen attributes for the
join need to be normalized, otherwise it is impossible to obtain a match because data attributes are
highly heterogeneous. In COVID-19 data the date format is: “2020-02-24 18:00:00”, in Lombardia
air pollution, the date format is: “2020/01/01”, in Puglia air pollution, the date format is: “2020-02-24
00:00:00.0”, and finally in climate data the date format is: “2020/February/24”. We chose as
common date format the following “2020-02-24”. Because the time of measurement is not relevant
form the subsequent analysis we split the date in three new attributes: year, day and month and
use them as dimensions in the cubes. The Reconciled Table (i.e., obtained joining all the input data) is
implemented through the use of Pandas DataFrames. DataFrame is a 2-dimensional high-performance
data structure suitable to represent a spreadsheet or SQL table. The Reconciled Table contains COVID
data combined with air pollution and climatic data.

Warehouse level: it is an information collector and plays the role of central and global container
of summarized data, designed to enable business intelligence activities. It is developed to emulate
the ability of DW to provide better analytical performance than transaction processing. We defined
a central collector of information, to avoid a complex scheme of data accesses that can contribute to
the risk of inconsistencies between the data marts, and to facilitate efficient storage, by enhancing the
quality of real data analysis processes. Data Marts are data structures that are optimized for faster
access. The DW is implemented using software components that can provide good performance to deal
with both massive and limited amounts of data, to make better operational decisions. The DW module
does not consist simply in a data container, but it also requires a customized architecture, able to
collect, store, analyze, and present information. Thus, we implemented the DW as a data structure
optimized to support quick and efficient access to multiple data sources, by tacking advantages from
the Pandas DataFrames. Moreover, all the relevant data structures available in the DW system (e.g.,
DFM, snowflakes etc) used to store all the data are implemented by using DataFrames.

Analysis level: it allows efficient and flexible consultation of integrated data for reporting, analysis
and simulation purposes. From the Reconciled Table of the DW, the DFM is automatically created from
which to yield the snowflake model, as well as the cubes (the aggregation of multidimensional data),
focusing on specific facts of interest for decision making. A cube represents a set of data, which are
described in principle by numerical measures. Each axis of the cube represents a possible dimension
of analysis. Each dimension can be viewed at the most detailed levels identified by the attributes.
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Data Visualization: it allows to display in a graphical form all the data cubes obtained from
the previous level. Data visualization allows to highlight in a remarkable way some features of
the analyzed data that is impossible to figure out otherwise, helping researchers to improve data
analysis process.

The Normalization and Denormalization Approaches

Database and Data Warehouse optimization is an essential step to improve performance
and provide better user experiences. To achieve better performance, the essential methods
are Normalization and Denormalization respectively applied in databases and data warehouses.
Normalization is a method of minimizing the number of insertion, deletion, and update due to the
presence of redundant data that can produce anomalies in the database. The goal of the normalization
process is to eliminate redundant data (e.g., the same data stored in more than one table), which are
responsible for wasting disk space, and slow down system performance. Normalization involves the
analysis of functional dependencies between attributes, allowing to distribute the data into multiple
tables, reducing data redundancy and inconsistency to achieve data integrity. Normalization relies on
the concepts of normal forms. A table is said to be in a normal form if it fulfills specific constraints.
In particular, there are five normal forms 1NF, 2NF, 3NF, 4NF, and 5NF, plus the Boyce-Codd Normal
Form (BCNF). Thus, Normalization is mainly applied in OnLine Transaction Processing (OLTP)
systems, where it is mandatory to make insertion, update, and delete as fast as possible.

Denormalization is the opposite of Normalization because redundancy is added to the data to
improve the performance of data warehouse applications while ensuring data integrity. The reason
for performing Denormalization is to eliminate the overheads provided by the query processor in
performing specific database queries that join data from many tables into one. Denormalization
method highlights the concept that placing all the data in one place reduces the need to search multiple
data structures to collect the searched data. Denormalization procedure regards the choice of attributes
to add to existent tables that allow reducing the number of joins, improving the overall performance.
Thus, Denormalization is applied in OnLine Analytical Processing (OLAP) systems, where it needs
to analyze and retrieve as fast as possible historical data stored from multiple database systems at
one time.

COVID-WAREHOUSE performance can be substantially improved by minimizing the number of
accesses to secondary storage during transaction processing. The number of access to the secondary
memory can be reduced by using Denormalization. Denormalization consists of reducing the number
of physical tables necessary to be accessed to retrieve the desired data by reducing the number of
required joins to derive the query. Denormalization in COVID-WAREHOUSE contributes to providing
better performance as well as aggregated data in a form ready for immediate display.

5. Results

In this section, we present a case study to demonstrate the functionality, capability, and validity
of the COVID-WAREHOUSE framework. All the analyses described in this section would have not
been possible without the ability of COVID-WAREHOUSE to integrate Italian COVID-19 data to air
pollution and climate data.

5.1. Preliminary Operations and Data Mart Building

The data mart we developed contains the Italian COVID-19, climate, and pollution data starting
from 24 February 2020, up to the 31 March 2020. COVID-19 and climatic data are updated daily
through the use of python scripts that periodically download new data, e.g., a script downloads Italian
COVID-19 data every day after 6 p.m. Instead, the climatic data are downloaded every morning.
Differently, air pollution data are collected each day manually. The latest data must be preprocessed to
remove inconsistency and missing data before being annexed in the apposite COVID-WAREHOUSE
tables. Often, downloaded data can contain information already in the data mart. In that case,
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the information from the latest data replaces the previous one. Thus, only the newest data are kept in
the data mart. At the end of the preprocessing, data are automatically converted into suitable tables
exploiting Pandas DataFrames [24]. In detail, the COVID-WAREHOUSE encloses several data frames,
e.g., Italian province and region tables, air pollution, and climate tables, from which to create the data
mart and the cubes quickly. The yielded cubes can be converted in reports easily, allowing the analyst
to obtain a correlation between the presence of both PM10 and PM2.5 and the number of positive cases.

The main steps to create a multidimensional data cube from raw COVID-19, climatic, and pollution
data are the following:

1. Creating the data source by injecting or updating data into the COVID-WAREHOUSE data
repository by using the available load update functions.

2. Data Cleaning is done automatically by COVID-WAREHOUSE at the end of the first step.
Raw data are automatically cleaned and encoded in a unique standard format using the
ETL functions available in COVID-WAREHOUSE. Users should only give to the COVID-
WAREHOUSE the name of the key attributes when required.

3. Data Merging is performed automatically by COVID-WAREHOUSE at the end of the data
cleaning process, yielding as output the Data Warehouse.

4. Data Mart Creation can be done in two ways: (i) creating a new Reconciled table or (ii) selecting
an existing Reconciled table to use as the Data Mart. The Reconciled table should contain the
attributes, metrics, and other objects that users want to use as columns in the data mart table and
populate the data mart. To create a new Data Mart, users must specify the attributes, and the
metrics to create the data mart, and the related multidimensional cube.

5. As the final step, COVID-WAREHOUSE automatically computes the correlation among the
chosen attributes and metrics and visualizes the results as heatmap.

5.2. Data Analysis

Our analysis of Italian COVID-19 data enriched with climate, and air pollution data, pursues the
objective to identify a possible correlation between climatic events (i.e., absence of rain, a windy day
etc.), the measured level of pollution and the spread of the COVID-19.

The correlation is a statistical measure of the relationship among variables whose characteristic
values belong to the range [−1, 1], where values of correlation closer to −1 and 1 indicate a strong
correlation between variables, while values nearest to 0 represent variables weakly related. In particular,
there exist three types of correlation, that are: Positive where if a variable increases, the other one
also increases, Negative or (Inverse) when one variable increases as the other one decreases, and No
Correlation if there is not relation between changes in the two variables. Table 3 reports the scale of
the values with which to evaluate the strength of the correlation results.

Table 3. The scale of correlation strength values.

Correlation Value Strength

−1.0 ≤ C ≤ −0.7 Strong Negative Correlation

−0.7 < C ≤ −0.3 Moderate Negative Correlation

−0.3 < C ≤ 0.0 Weak Negative Correlation

0.0 < C ≤ 0.3 Weak Positive Correlation

0.3 < C ≤ 0.7 Moderate Positive Correlation

0.7 < C ≤ 1.0 Strong Positive Correlation
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A typical analysis workflow using COVID-WAREHOUSE comprises the following steps (which
are performed automatically by COVID-WAREHOUSE, see Figure 3):

1. Data Collection: COVID-WAREHOUSE read from the local repository the climate, air pollution,
and Italian COVID-19 data, importing data automatically into the Data-Container.

2. Data Cleaning: data are automatically cleaned and transformed by means of automatic ETL
approaches, tailored for COVID-19, air pollution and climatic data. In particular, we implemented
several ETL methods based on Regular Expression (RE) to extract, clean and format attributes.
For each data set we figure out the main attributes e.g., key-attributes including Region, Province,
and Date-Time, making it possible to relate all the downloaded data. Region and Province
attributes have been cleaned removing or replacing special characters, e.g., due to the use of
Latin-1 encoding and converted in UTF-8 encoding, avoiding in this way possible mismatches.
Attribute Date-Time has been cleaned, encoded in UTF-8, and converted in a new and common
format e.g., “YYYY/MM/DD”. All the other attributes have been cleaned by removing or replacing
special characters and encoded in UTF-8. As an example, the rain attribute present in the climatic
data set contains literal values e.g., “sereno, pioggia, etc.”, that need to be converted into numerical
values. Thus, the rain attribute has been discretized by mapping specific climatic conditions using
4 values e.g., 0 indicates absence of rain, 1 represents all the types of rain, 2 refers to sleet, and,
finally, 3 indicates snow.

3. Data Merging: data are automatically merged by using customized joining schema, through the
joining and merging functions available in Python Pandas Data Frames, making it possible to
obtain a single ReData Analysisconciled Table from the all the input data sets. Cleaned Data
provides the foundation to create the Reconciled Table, because now all the key attributes are in
the same format and encoding, making it possible to represent multidimensional concepts in a
more efficient way.

4. Data Aggregation: it is implemented by using the functions available in Pandas Data Frames.
In this way, it is possible to yield a condensed version of the DW called Data Mart obtained from
the Reconciled Table. Data Marts make it possible to quickly aggregate data because they are
small in size with respect to the overall DW, and are more flexible to yield multidimensional
cubes. Since, DW has data coming in from multiple data sources, Data Marts help to efficiently
organize all of data in a multidimensional format (cube) enabling to perform data analysis in a
straightforward and more efficient way.

5. Data Analysis and Visualization: it allows to perform statistical analysis and visualization on
the predefined cubes. In particular, COVID-WAREHOUSE provides the users with an automatic
tools to perform correlation analysis on data cubes, as well as data report. To make data analysis
more straightforward, correlation results are displayed using a Heatmap representation, making
it easier to assess the correlation strength between two variables.

To figure out the possible correlation among environmental factors (i.e., air pollution, and climatic
conditions) that can contribute to the spread of the COVID-19 disease (i.e., the total number of positive
cases recorded daily), we aggregated data in the following multidimensional cubes:

[CUBE-1]: The total number of positive cases recorded in the Lombardia region has been represented
in a 3D space, whose dimensions are the recording date, the provinces of Lombardia,
the meteorological information w.r.t. average wind speed (Km/h) and the detected air
pollution PM10 (µg/m3), and PM2.5 (µg/m3) values, and the considered measure is the
number of positive people.

[CUBE-2]: The total number of positive cases recorded in the Lombardy region has been represented
in a 3D space, whose dimensions are the recording date, the provinces of Lombardy,
the climatic conditions (presence/absence of rain) and the detected air pollution PM10
(µg/m3), and PM2.5 (µg/m3) values, and the considered measure is the number of
positive people.
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[CUBE-3]: The total number of positive cases recorded in the Puglia region has been represented in a
3D space, whose dimensions are the recording date, the provinces of Puglia, the climatic
conditions wind (Km/h) and the detected air pollution PM10 (µg/m3) values, and the
measure is the number of positive people.

[CUBE-4]: The total number of positive cases recorded in the Puglia region has been represented in a
3D space, whose dimensions are the recording date, the provinces of Puglia, the climatic
conditions (presence/absence of rain) and the detected air pollution PM10 (µg/m3)
values, and as measure the number of positive people has been taken into account.

[CUBE-5]: The total number of positive cases recorded in the whole Italian territory has been
represented in a 3D space, whose dimensions are the recording date, all Italian location
regions, the climatic conditions presence/absence of rain, wind (Km/h), and as measure
the number of positive people has been considered.

Document

Data
Collection

DB

Document

Data
Cleaning

Data
Merging

Data
Aggregation

Data
Analysis and
Visualization

Figure 3. The main modules of COVID-WAREHOUSE analysis pipeline. Data Collection allows to
store the downloaded raw data locally. Data Cleaning provides ETL methods based on RE, enabling
the cleaning, replacing and deletion of special characters present into the raw data, that can compromise
the next steps and analysis. Data Merging uses cleaned data to produce the Reconciled Table. Data
Aggregation yields a condensed version of the DW called Data Mart obtained from the Reconciled
Table, from which to obtain the multidimensional cubes. Data Analysis and Visualization allows to
perform statistical analysis and Heatmap visualization on the predefined cubes.

To compute correlation for each one of the 5 yielded cubes, it was needed to identify the
independent and dependent variables. In all cubes, the dependent variable is the number of
positive cases, for CUBES-[1,2,3,4] the independent variables are air pollution and climatic conditions,
whereas for CUBE-5 the independent variable is the climatic conditions (we do not have pollution
data for all Italy). To calculate the correlation between more than two variables, we used the multiple
correlation coefficient [25]. The coefficient of multiple correlation generalizes the standard coefficient
of correlation. It is used in multiple regression analysis to assess the quality of the prediction of the
dependent variable. The coefficient of multiple correlation is defined in Equation (1):

Corr =

√
xy2 + yz2 − 2xz ∗ yz ∗ xy

1 − xy2 (1)

In Equation (1), x and y are the independent variables and z is the dependent variable, on which
to map the dependent and independent variables of the analyzed cubes. We calculate the multiple
correlation for all the provided cubes by using Equation (1). To make correlation analysis easier by
using the scale of correlation values summarized in Table 3, multiple correlation results are visualized
as heatmaps. Figure 4 shows the correlation values calculated from CUBE-1. It is worthy to note
that, the dimension wind appears to be strongly positively correlated with the number of positive
cases (corr = 0.8), whereas particulate particles PM10 present a strong correlation with the number of
positive cases (corr = 0.7). This result, should pinpointing out that faster wind speed, along with he
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presence of higher level of particulate particles in the air, might contribute to increase the spread of
the COVID-19.

Figure 4. Heatmap represents the correlation between aggregated COVID-19 data with air pollution
and wind data (km/h) detected in the Lombardia region. The heatmap’s labels refer to the attribute’s
measured value in a specific week of the year. For instance, ’PM10’, 9 refers to the level of PM10
(µg/m3) in the air measured in the 9-th week of the year. In Figure, the yellow squares highlight the
strong correlation between positive cases and the presence of wind, whereas red squares show the
strong correlation between air particulate and the number of positive cases.

Figure 5 shows the correlation values computed from CUBE-2. The heatmap highlights a strong
negative correlation (corr = −0.9) between rain and the number of positive cases. This should mean
that, when it is raining, the number of infections should decrease. PM10 presents both a strong
correlation (corr = 0.7), with respect to the number of positive cases. PM2.5 presents both a strong
negative correlation (corr = −0.7) with the number of positive cases. The correlation for both particulate
particles, is due to the correlation with the rain, showing a strong negative correlation (corr = −0.9),
meaning that, when there is rain the particulate level in the air tends to drop down, limiting the
spreading of the virus.
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Figure 5. Heatmap representation of the correlation between COVID-19 data aggregate with the air
pollution and rain data (boolean variable) detected in the Lombardia region. The heatmap’s labels refer
to the attribute’s measured value in a specific week of the year. For instance, ’PM10’, 9 refers to the
level of PM10 (µg/m3) in the air measured in the 9-th week of the year. In Figure, the yellow squares
highlight the strong negative correlation between positive cases and the presence of rain, whereas red
squares show both strong positive correlation between the PM10 air particulate and the number of
positive cases. Green squares show strong negative correlation between the PM2.5 air particulate and
the number of positive cases.

Figure 6 shows the correlation values computed from CUBE-3. PM10 presents a strong correlation
(corr = 0.9) with the total number of positive cases. Wind has a strong correlation (corr = 0.9) with
the total number of positive cases. This result shows that even for the Puglia region as well as for
Lombardia, wind and high values of particulate in the air could contribute to the spread of the virus.
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Figure 6. Heatmap representation of the correlation between COVID-19 data aggregate with the air
pollution and wind data (km/h) measured in the Puglia region. The heatmap’s labels refer to the
attribute’s measured value in a specific week of the year. For instance, ’PM10’, 9 refers to the level of
PM10 (µg/m3) in the air measured in the 9-th week of the year. In Figure the yellow squares highlight
the strong correlation between positive cases and the presence of wind, whereas red squares show the
strong correlation between air particulate and the number of positive cases.

Figure 7 shows the correlation values computed from CUBE-4. PM10 presents a strong, positive
correlation (corr = 0.9) with the total number of positive cases. Rain has a strong negative correlation
(corr = −0.7) with the total number of positive cases. As well as for CUBE-2, even for CUBE-4 rain and
particulate particles have a strong negative correlation (corr = −0.8).
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Figure 7. Heatmap representation of correlation between COVID-19 data aggregate with the air
pollution and rain data (boolean variable) detected in the Puglia region. The heatmap’s labels refer
to the attribute’s measured value in a specific week of the year. For instance, ’PM10’, 9 refers to the
level of PM10 (µg/m3) in the air measured in the 9-th week of the year. In Figure, the yellow squares
highlight the strong positive correlation between positive cases and the presence of air particulate
PM10, whereas red squares show the strong negative correlation between rain and the number of
positive cases. Green squares show strong negative correlation between rain and PM10 particulate.

Figure 8 shows the correlation values calculated from CUBE-5. The attribute rain presents a
positive strong correlation (corr = 0.7) with the total positive cases, whereas wind presents a moderate
negative correlation (corr = −0.6) with the total positive cases.

Our findings indicate that COVID-19 pandemic is significantly spread in regions characterized by
high concentration of particulate in the air and the absence of rain and wind, as even stated in several
scientific paper investigating the climatic and pollution effect on the COVID-19 spreading in other
countries [13,15,16].
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Figure 8. Heatmap representation of the data cube aggregating together the meteorological data for
all the Italian regions and the COVID-19 data. The heatmap’s labels refer to the attribute’s measured
value in a specific week of the year. For instance, ’PM10’, 9 refers to the level of PM10 (µg/m3) in the
air measured in the 9-th week of the year. In Figure the yellow squares highlight the strong correlation
between positive cases and the presence of rain, whereas green squares show the strong negative
correlation between wind and the number of positive cases.

6. Conclusions

In this paper, we proposed a new approach for building a data warehouse from a limited volume
of data, such as Italian COVID-19 data. We developed an automatic methodology to enrich Italian
COVID-19 data with air pollution and climatic data in the Italian regions. Additionally, to the
heterogeneous nature of the data sources participating in the construction of our data warehouse model,
we defined some merging models to handle, clarify (eliminate ambiguity) and unify data in a reconciled
model. Merged models are stored and available in the data warehouse repository. The presence of
these models may contribute to reduce the complexity of other phases of the data warehouse life cycle
(optimization, personalization, and evolution management). Indeed, we implemented a set of ETL
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methods that are exploiting the available merging models, can automatize the whole data analysis
workflow, starting from the data import up to the data visualization and analysis.

The proposed approach is implemented in a software framework called COVID-WAREHOUSE,
fully developed in Python. COVID-WAREHOUSE allows users to import, clean, merge, and aggregate
heterogeneous data, to provide the central repository (data warehouse) from which to assemble
multidimensional cubes. In the current version, COVID-WAREHOUSE supports users to enrich
COVID-19 data with air pollution and climatic data, making it possible to create multidimensional
data cubes (by using a different set of measures and values). In this way, COVID-WAREHOUSE
allows to represent data along with some measure of interest (not available in the standard COVID-19
data), helping to get a border scenario by establishing trends from a variety of viewpoints aggregated
data. Thus, multidimensional analysis of data helps to capture and quantify significant changes in
aggregated COVID-19 data, bringing to light aspects of these changes that can help to explain the
underlying events and mechanisms which drive them.

To facilitate the analysis of the concerned multidimensional data cubes, the COVID-WAREHOUSE
allows the calculation of the statistical correlation among multiple variables. The obtained correlation
results are presented as heat-maps, making it easier to understand if there is a relationship between
the investigated variables.

Our preliminary analysis of COVID-19 data integrated with air pollution and climate data,
have shown that in Lombardia and Puglia regions the levels of PM10, and the average wind speed
show a positive strong correlation with the number of positive cases, with the correlation coefficients
ranging from 0.7 to 0.9. On the other hand, in both Lombardia and Puglia regions the level of
PM10, and rain show a strong negative correlation with the number of positive cases, with the
correlation coefficients ranging from 0.7 to 0.9. However, by analyzing the climate data for all the
Italian regions, the absence of rain shows a strong positive correlation with the number of positive
cases, and the correlation coefficient equals to 0.7, while the average wind speed shows a moderate
negative correlation with the number of positive cases, with a correlation coefficient equals to −0.6.

Our preliminary findings could suggest that COVID-19 pandemic has significantly spread in
regions characterized by high concentration of particulate in the air and absence of rain and wind,
according with similar scientific results in the literature.

As future work, we are planning to improve the data cubes creation by adding a graphical
user interface, supporting users to create data cubes through drag-and-drop functions. Also, we are
extending ETL functions and data warehouse models to handle COVID-19 data from other countries
(as they become available), to make multiple data comparison straightforward. We are also extending
the statistical analysis library available in COVID-WAREHOUSE, providing users with both an analysis
and data storage environment, avoiding the need to use additional software for data analysis.
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